Ray space ‘Riccati’ evolution and geometric phases for N-level quantum systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ray space ‘Riccati’ evolution and geometric phases for N-level quantum systems

S. Chaturvedi School of Physics. University of Hyderabad, Hyderabad 500 046, India. E. Ercolessi Physics Dept., University of Bologna, CNISM and INFN, 46 v.Irnerio, I-40126, Bologna, Italy. G. Marmo Dipartimento di Scienze Fisiche, University of Napoli and INFN, v.Cinzia, I-80126, Napoli, Italy. G. Morandi Physics Dept., University of Bologna, CNISM and INFN, 6/2 v.le Berti Pichat, I-40127, Bol...

متن کامل

Geometric Phases for SU(3) Representations and Three Level Quantum Systems

A comprehensive analysis of the pattern of geometric phases arising in unitary representations of the group SU(3) is presented. The structure of the group manifold, convenient local coordinate systems and their overlaps, and complete expressions for the Maurer—Cartan forms are described. Combined with a listing of all inequivalent continuous subgroups of SC/(3) and the general properties of dyn...

متن کامل

Density Matrices and Geometric Phases for n-state Systems

An explicit parameterization is given for the density matrices for n-state systems. The geometry of the space of pure and mixed states and the entropy of the n-state system is discussed. Geometric phases can arise in only specific subspaces of the space of all density matrices. The possibility of obtaining nontrivial abelian and nonabelian geometric phases in these subspaces is discussed. Perma...

متن کامل

On geometric phases for quantum trajectories

A sequence of completely positive maps can be decomposed into quantum trajectories. The geometric phase or holonomy of such a trajectory is delineated. For nonpure initial states, it is shown that well-defined holonomies can be assigned by using Uhlmann’s concept of parallel transport along the individual trajectories. We put forward an experimental realization of the geometric phase for a quan...

متن کامل

Geometric phases , gauge symmetries and ray representation

The conventional formulation of the non-adiabatic (Aharonov-Anandan) phase is based on the equivalence class {eiα(t)ψ(t, ~x)} which is not a symmetry of the Schrödinger equation. This equivalence class when understood as defining generalized rays in the Hilbert space is not generally consistent with the superposition principle in interference and polarization phenomena. The hidden local gauge s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pramana

سال: 2007

ISSN: 0304-4289,0973-7111

DOI: 10.1007/s12043-007-0135-0